Showing posts with label Natural Heritage. Show all posts
Showing posts with label Natural Heritage. Show all posts

Tuesday 21 January 2020

Platypus on brink of extinction


Australia's devastating drought is having a critical impact on the iconic platypus, a globally unique mammal, with increasing reports of rivers drying up and platypuses becoming stranded.

Platypus on brink of extinction
The platypus is one of the world's strangest animals
[Credit: Torsten Blackwood/AFP]
Platypuses were once considered widespread across the eastern Australian mainland and Tasmania, although not a lot is known about their distribution or abundance because of the species' secretive and nocturnal nature.

A new study led by UNSW Sydney's Centre for Ecosystem Science, funded through a UNSW-led Australian Research Council project and supported by the Taronga Conservation Society, has for the first time examined the risks of extinction for this intriguing animal.

Published in the international scientific journal Biological Conservation this month, the study examined the potentially devastating combination of threats to platypus populations, including water resource development, land clearing, climate change and increasingly severe periods of drought.


Lead author Dr Gilad Bino, a researcher at the UNSW Centre for Ecosystem Science, said action must be taken now to prevent the platypus from disappearing from our waterways.

"There is an urgent need for a national risk assessment for the platypus to assess its conservation status, evaluate risks and impacts, and prioritise management in order to minimise any risk of extinction," Dr Bino said.

Alarmingly, the study estimated that under current climate conditions and due to land clearing and fragmentation by dams, platypus numbers almost halved, leading to the extinction of local populations across about 40 per cent of the species' range, reflecting ongoing declines since European colonisation.

Platypus on brink of extinction
UNSW Sydney's Centre for Ecosystem Science leads new research into
the extinction risk of the platypus [Credit: Tahnael Hawke]
Under predicted climate change, the losses forecast were far greater because of increases in extreme drought frequencies and duration, such as the current dry spell.

Dr Bino added: "These dangers further expose the platypus to even worse local extinctions with no capacity to repopulate areas."

Documented declines and local extinctions of the platypus show a species facing considerable risks, while the International Union for Conservation of Nature (IUCN) recently downgraded the platypus' conservation status to "Near Threatened".


But the platypus remains unlisted in most jurisdictions in Australia - except South Australia, where it is endangered.

Director of the UNSW Centre for Ecosystem Science and study co-author Professor Richard Kingsford said it was unfortunate that platypuses lived in areas undergoing extensive human development that threatened their lives and long-term viability.

"These include dams that stop their movements, agriculture which can destroy their burrows, fishing gear and yabby traps which can drown them and invasive foxes which can kill them," Prof Kingsford said.

Platypus on brink of extinction
The UNSW-led project raises concerns about the decline
of platypus populations [Credit: UNSW Science]
Study co-author Professor Brendan Wintle at The University of Melbourne said it was important that preventative measures were taken now.

"Even for a presumed 'safe' species such as the platypus, mitigating or even stopping threats, such as new dams, is likely to be more effective than waiting for the risk of extinction to increase and possible failure," Prof Wintle said.

"We should learn from the peril facing the koala to understand what happens when we ignore the warning signs."


Dr Bino said the researchers' paper added to the increasing body of evidence which showed that the platypus, like many other native Australian species, was on the path to extinction.

"There is an urgent need to implement national conservation efforts for this unique mammal and other species by increasing monitoring, tracking trends, mitigating threats, and protecting and improving management of freshwater habitats," Dr Bino said.

The platypus research team is continuing to research the ecology and conservation of this enigmatic animal, collaborating with the Taronga Conservation Society, to ensure its future by providing information for effective policy and management.

Source: University of New South Wales [January 21, 2020]

Global study finds predators are most likely to be lost when habitats are converted for human use


A first of its kind, global study on the impacts of human land-use on different groups of animals has found that predators, especially small invertebrates like spiders and ladybirds, are the most likely to be lost when natural habitats are converted to agricultural land or towns and cities. The findings are published in the British Ecological Society journal Functional Ecology.

Global study finds predators are most likely to be lost when habitats are converted for human use
A Malaysian spider, one of the small predators found in our study to be
most affected by habitat loss [Credit: Tim Newbold]
Small ectotherms (cold blooded animals such as invertebrates, reptiles and amphibians), large endotherms (mammals and birds) and fungivores (animals that eat fungi) were also disproportionally affected, with reductions in abundance of 25-50% compared to natural habitats.

The researchers analysed over one million records of animal abundance at sites ranging from primary forest to intensively managed farmland and cities. The data represented over 25,000 species across 80 countries. Species were grouped by size, whether they were warm or cold blooded and by what they eat. Species ranged from the oribatid mite weighing only 2x10-6g, to an African elephant weighing 3,825kg.


Dr. Tim Newbold at UCL (University College London) and lead author of the research said: "Normally when we think of predators, we think of big animals like lions or tigers. These large predators did not decline as much as we expected with habitat loss, which we think may be because they have already declined because of human actions in the past (such as hunting). We find small predators - such as spiders and ladybirds - to show the biggest declines."

The results indicate that the world's ecosystems are being restructured with disproportionate losses at the highest trophic levels (top of the food chain). Knowing how different animal groups are impacted by changing land-use could help us better understand how these ecosystems function and the consequences of biodiversity change.

"We know that different types of animals play important roles within the environment - for example, predators control populations of other animals. If some types of animals decline a lot when we lose natural habitats, then they will no longer fulfil these important roles." said Dr. Tim Newbold.


The conversion of land to human use is associated with the removal of large amounts of natural plant biomass, usually to give space for livestock and crops. The limiting of the quantity and diversity of resources available at this level potentially explains the disproportionate reductions in predators seen in this study. As you go up the trophic levels (food chain), resource limitations are compounded through a process known as bottom-up resource limitation.

The study is part of the PREDICTS project which explores how biodiversity responds to human pressures. The researchers analysed 1,184,543 records of animal abundance in the PREDICTS database, gathered from 460 published scientific studies. This database included all major terrestrial vertebrate taxa and many invertebrate taxa (25,166 species, 1.8% of described animals).

Species were sorted into functional groups defined by their size, trophic level (what they consumed) and thermal regulation strategy (warm or cold blooded). The type of land-use at each of the 13,676 sample sites was classified from the description of the habitat in the source publication. The six broad categories were primary vegetation, secondary vegetation, plantation forest, cropland, pasture and urban. Three levels of human use intensity were also recorded: minimal, light and intense.


Dr. Tim Newbold explained that studies like this are limited by the available data: "As with all global studies, we are limited in the information that is available to us about where animals are found and what they eat. We were able to get information for more animals than ever before, but this was still only around 1 out of every 100 animals known to science."

The researchers also observed biases in the spread of data across types of land-use, animal groups and parts of the world. "Natural habitats and agricultural areas have been studied more than towns and cities. We think this is because ecologists tend to find these environments more interesting than urban areas as there tend to be more animals in them." said Dr. Tim Newbold. The researchers also found that large parts of Asia were under sampled for several functional groups. Birds were also better represented among vertebrates and insects better represented among invertebrates.

The researchers are now interested in exploring how groups of animals that play particularly important roles for agriculture, such as pollinating or controlling crop pests, are affected by habitat loss.

Author: Davy Falkner | Source: British Ecological Society [January 21, 2020]

Preparing land for palm oil causes most climate damage


New research has found preparing land for palm oil plantations and the growth of young plants causes significantly more damage to the environment, emitting double the amount of greenhouse gases than mature plantations.

Preparing land for palm oil causes most climate damage
Peat swamp deforestation and drainage for new oil palm plantations in North Selangor
Peat Swamp Forest, Malaysia [Credit: Stephanie Evers]
This is the first study to examine the three main greenhouse gas emissions across the different age stages of palm oil plantations. It was carried out by plant scientists from the University of Nottingham in the North Selangor peat swamp forest in Malaysia with support from the Salangor State Forestry Department. It has been published in Nature Communications.


Palm oil is the most consumed and widely traded vegetable oil in the world. Global demand has more than tripled in the last eighteen years, from around 20 million tonnes in 2000 to over 70 million in 2018 and Malaysia is the world's second largest producer. The University of Nottingham researchers analysed five sites at four different stages of land use: secondary forest, recently drained but uncleared forest, cleared and recently planted young oil palm plantation and mature oil palm plantation.

Laboratory analysis of soil and gas from these sites showed that the greatest fluxes of CO2 occurred during the drainage and young oil palm stages with 50% more greenhouse gas emissions than the mature oil palms. These emissions also account for almost a quarter of the total greenhouse emissions for the region.


Tropical peat swamp forests hold around 20% of global peatland carbon. However, the contribution of peat swamp forests to carbon storage is currently under threat from large-scale expansion of drainage-based agriculture including oil palm and pulp wood production on peatlands.

Draining peatlands increases the oxygen levels in the soil, which in turn increases the rate of decomposition of organic material, resulting in high CO2 emissions from drained peatlands. In addition to CO2, peatlands also emit the powerful greenhouse gases (CH4 and N2O8)..

Dr Sofie Sjogersten from the University of Nottingham's School of Biosciences led the research and said: "Tropical peat swamps have historically been avoided by palm oil growers due to the amount of preparation and drainage the land needs, but as land becomes more scarce there has been an increased demand to convert sites and the periphery of North Selangor is being heavily encroached upon by palm oil plantations. Our research shows that this conversion comes at a heavy cost to the environment with greater carbon and greenhouse gas emissions being caused by the early stages of the growth of palm oil."

Source: University of Nottingham [January 21, 2020]

Monday 20 January 2020

Ozone-depleting substances caused half of late 20th-century Arctic warming, says study


A scientific paper published in 1985 was the first to report a burgeoning hole in Earth's stratospheric ozone over Antarctica. Scientists determined the cause to be ozone-depleting substances - long-lived artificial halogen compounds. Although the ozone-destroying effects of these substances are now widely understood, there has been little research into their broader climate impacts.

Ozone-depleting substances caused half of late 20th-century Arctic warming, says study
A new study shows that half of all Arctic warming and corresponding sea-loss during the late 20th century was
caused by ozone-depleting substances. Here, icebergs discharged from Greenland's Jakobshavn Glacier
[Credit: Kevin Krajick/Earth Institute]
A recent study published in Nature Climate Change by researchers at Columbia University examines the greenhouse warming effects of ozone-depleting substances and finds that they caused about a third of all global warming from 1955 to 2005, and half of Arctic warming and sea ice loss during that period. They thus acted as a strong supplement to carbon dioxide, the most pervasive greenhouse gas; their effects have since started to fade, as they are no longer produced and slowly dissolve.

Ozone-depleting substances, or ODS, were developed in the 1920s and '30s and became popularly used as refrigerants, solvents and propellants. They are entirely manmade, and so did not exist in the atmosphere before this time. In the 1980s a hole in Earth's stratospheric ozone layer, which filters much of the harmful ultraviolet radiation from the sun, was discovered over Antarctica. Scientists quickly attributed it to ODS.


The world sprang into action, finalizing a global agreement to phase out ODS. The Montreal Protocol, as it is called, was signed in 1987 and entered into force in 1989. Due to the swift international reaction, atmospheric concentrations of most ODS peaked in the late 20th century and have been declining since. However, for at least 50 years, the climate impacts of ODS were extensive, as the new study reveals.

Scientists at Columbia's School of Engineering and Applied Science and the Lamont-Doherty Earth Observatory used climate models to understand the effects of ODS on Arctic climate. "We showed that ODS have affected the Arctic climate in a substantial way," said Lamont-Doherty researcher Michael Previdi. The scientists reached their conclusion using two very different climate models that are widely employed by the scientific community, both developed at the U.S. National Center for Atmospheric Research.

The results highlight the importance of the Montreal Protocol, which has been signed by nearly 200 countries, say the authors. "Climate mitigation is in action as we speak because these substances are decreasing in the atmosphere, thanks to the Montreal Protocol," said Lorenzo Polvani, lead author of the study and a professor in Columbia's Department of Applied Physics and Applied Mathematics. "In the coming decades, they will contribute less and less to global warming. It's a good-news story."

Source: Columbia University [January 20, 2020]

Pyrenees glaciers 'doomed', experts warn


Glaciers nestled in the lofty crags of the Pyrenees mountains separating France and Spain could disappear within 30 years as temperatures rise, upending ecosystems while putting local economies at risk, scientists say.

Pyrenees glaciers 'doomed', experts warn
A view of the Pyrenees from the observatory at the Pic du Midi de Bigorre, where the average temperature
has risen by 1.7 degrees since 1880 [Credit: Pascal Pavani/AFP]
"We can't set a precise date but the Pyrenees glaciers are doomed," Pierre Rene, a glaciologist with the region's Moraine glacier study association, told AFP.

He estimates the end will come by 2050, based on the group's measurements of nine of the 15 glaciers on the French side over the past 18 years.

The United Nations has said the past decade has been the hottest on record and warned that persistent greenhouse gas emissions were expected to push average global temperatures even higher, leading to retreating ice cover, rising sea levels and increasingly extreme weather. It also confirmed that 2019 was the second hottest year on record, after 2016.


Surveys, core samples and GPS tracking of the Pyrenees glaciers all point to the same conclusions already noted at glaciers in the Alps and elsewhere: Warmer and drier winters appear to be inexorably shrinking and thinning the ice fields.

The total surface area of the nine glaciers tracked by Moraine now stands at 79 hectares (195 acres) compared with 140 hectares just 17 years ago, Rene said.

That is just a small fraction of the 450 hectares they covered in the middle of the 19th century—and the pace of decline is accelerating.

Since 2002, the nine glaciers have lost 3.6 hectares every year, the equivalent of five soccer pitches, Moraine says in its report on the 2019 season.

Last year was no exception, with the bottom edge of five glaciers tracked by Moraine retreating by 8.1 metres (27 feet) on average last summer, up from 7.9 metres recorded in previous years, it said.

'Wiped off the map'

Scientists also warn of the hit to high-altitude ecosystems and biodiversity, with consequences that will ripple well beyond the mountainous zones.

Glaciers and the cold rivers they feed harbour bacteria and fungi that have adapted to the harsh conditions, including the near-absence of light, said Sophie Cauvy-Fraunie, a researcher at the INRAE agricultural and environmental institute.

Microscopic algae also provides a first link in the food chain of glacier environments, sustaining glacial fleas and other insects.


As temperatures rise and more ground is exposed as the glaciers retreat, the landscape will become vulnerable to colonisation from plants and animals that currently can survive only at lower altitudes.

"If native species in the Pyrenees depend on glacial influences, you can imagine that they are going to be wiped off the map," Cauvy-Fraunie said.

The regional OPCC climate observatory estimated in a 2018 report that average maximum temperatures across the Pyrenees could rise by 1.4 to 3.3 degrees Celsius (2.5 to 4 Fahrenheit) by the middle of this century.

The increase has been even more dramatic at higher altitudes, where shrinking glaciers are seen as a harbinger of dire consequences across the range.

On the 2,870-metre (9,416-foot) Midi de Bigorre peak above the La Mongie ski resort—favoured by French President Emmanuel Macron—the average temperature has risen by 1.7 degrees since 1880, compared with a global average of 0.85 degrees, Moraine says.

Tourism affected

That could spell disaster for the roughly three dozen ski resorts on both the French and Spanish sides, as well as the popular stations in Andorra.

Already this year, around half of French resorts had to push back their scheduled openings before the Christmas holidays because of warm winds sweeping up from the south.


That came after a 2018-2019 season that saw the lowest snowfalls since regular measurements began 22 years earlier, according to the Meteo France weather service.

It took a heavy toll on tourism as lift ticket sales and hotel reservations plunged, with many skiers heading to higher slopes in the French Alps.

Already several glaciers have been reduced to little more than year-round snow packs, which will also impact the summer tourist season.

Rene said climbers will lose their "stepladders" for ascents to the highest peaks, "making their routes to the top more difficult".

And for hikers at lower elevations, the retreat will destabilise the newly exposed slopes, heightening the risk of rock falls or even avalanches.

Author: Herve Gavard | Source: AFP [January 20, 2020]